Extensions 1→N→G→Q→1 with N=C22 and Q=C4.D4

Direct product G=N×Q with N=C22 and Q=C4.D4
dρLabelID
C22×C4.D432C2^2xC4.D4128,1617

Semidirect products G=N:Q with N=C22 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C221(C4.D4) = M4(2)⋊20D4φ: C4.D4/M4(2)C2 ⊆ Aut C2232C2^2:1(C4.D4)128,632
C222(C4.D4) = C25.C4φ: C4.D4/C2×D4C2 ⊆ Aut C2216C2^2:2(C4.D4)128,515

Non-split extensions G=N.Q with N=C22 and Q=C4.D4
extensionφ:Q→Aut NdρLabelID
C22.1(C4.D4) = C24.(C2×C4)φ: C4.D4/M4(2)C2 ⊆ Aut C2232C2^2.1(C4.D4)128,203
C22.2(C4.D4) = C42.67D4φ: C4.D4/M4(2)C2 ⊆ Aut C2264C2^2.2(C4.D4)128,262
C22.3(C4.D4) = C42.80D4φ: C4.D4/M4(2)C2 ⊆ Aut C2264C2^2.3(C4.D4)128,283
C22.4(C4.D4) = C42.4Q8φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.4(C4.D4)128,17
C22.5(C4.D4) = C23.C42φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.5(C4.D4)128,37
C22.6(C4.D4) = C24⋊C8φ: C4.D4/C2×D4C2 ⊆ Aut C2216C2^2.6(C4.D4)128,48
C22.7(C4.D4) = C23.15M4(2)φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.7(C4.D4)128,49
C22.8(C4.D4) = (C2×D4)⋊C8φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.8(C4.D4)128,50
C22.9(C4.D4) = (C2×C42).C4φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.9(C4.D4)128,51
C22.10(C4.D4) = C4.C4≀C2φ: C4.D4/C2×D4C2 ⊆ Aut C22168+C2^2.10(C4.D4)128,87
C22.11(C4.D4) = C42.(C2×C4)φ: C4.D4/C2×D4C2 ⊆ Aut C22328-C2^2.11(C4.D4)128,88
C22.12(C4.D4) = C8.24D8φ: C4.D4/C2×D4C2 ⊆ Aut C22164+C2^2.12(C4.D4)128,89
C22.13(C4.D4) = C8.25D8φ: C4.D4/C2×D4C2 ⊆ Aut C22324-C2^2.13(C4.D4)128,90
C22.14(C4.D4) = C8.29D8φ: C4.D4/C2×D4C2 ⊆ Aut C22164C2^2.14(C4.D4)128,91
C22.15(C4.D4) = C8.1Q16φ: C4.D4/C2×D4C2 ⊆ Aut C22324C2^2.15(C4.D4)128,98
C22.16(C4.D4) = C25.3C4φ: C4.D4/C2×D4C2 ⊆ Aut C2216C2^2.16(C4.D4)128,194
C22.17(C4.D4) = C42.70D4φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.17(C4.D4)128,265
C22.18(C4.D4) = C42.82D4φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.18(C4.D4)128,287
C22.19(C4.D4) = C42.85D4φ: C4.D4/C2×D4C2 ⊆ Aut C2264C2^2.19(C4.D4)128,290
C22.20(C4.D4) = (C22×C4).275D4φ: C4.D4/C2×D4C2 ⊆ Aut C2232C2^2.20(C4.D4)128,553
C22.21(C4.D4) = (C2×C4).98D8central extension (φ=1)64C2^2.21(C4.D4)128,2
C22.22(C4.D4) = (C2×Q8)⋊C8central extension (φ=1)128C2^2.22(C4.D4)128,4
C22.23(C4.D4) = C23.19C42central extension (φ=1)64C2^2.23(C4.D4)128,12
C22.24(C4.D4) = C42.7Q8central extension (φ=1)128C2^2.24(C4.D4)128,27
C22.25(C4.D4) = C42.8Q8central extension (φ=1)128C2^2.25(C4.D4)128,28
C22.26(C4.D4) = C2×C23⋊C8central extension (φ=1)32C2^2.26(C4.D4)128,188
C22.27(C4.D4) = C2×C42.C22central extension (φ=1)64C2^2.27(C4.D4)128,254
C22.28(C4.D4) = C2×C4.D8central extension (φ=1)64C2^2.28(C4.D4)128,270
C22.29(C4.D4) = C2×C4.6Q16central extension (φ=1)128C2^2.29(C4.D4)128,273
C22.30(C4.D4) = C2×C22.C42central extension (φ=1)64C2^2.30(C4.D4)128,473

׿
×
𝔽